法二
微积分
由能量关系:
[math]
\frac12mv^2-\frac{GMm}{|x|}=-\frac{GMm}{d}
[/math]
得:
[math]
v=\sqrt{2GM}\sqrt{-\frac{1}{x}-\frac{1}{d}}
[/math]
则:
[math]
\mathrm{d} t=\frac{\mathrm{d} x}{v}=\frac{1}{\sqrt{2 G M}} \frac{\mathrm{d} x}{\sqrt{-\frac{1}{x}-\frac{1}{d}}} \implies t=\int_{-d}^{0} \frac{\mathrm{d} x}{\sqrt{2G M} \cdot \sqrt{-\frac{1}{x}-\frac{1}{d}}}
[/math]
[math]
\implies t=\frac{1}{\sqrt{2 G M}} \int_{0}^{d} \frac{\mathrm{d} x}{\sqrt{\frac{1}{x}-\frac{1}{d}}}=\frac{1}{\sqrt{2 G M}} \int_{0}^{d} \sqrt{\frac{d x}{d-x}} \mathrm{d} x
[/math]
无量纲化:
[math]
t=\frac{1}{\sqrt{2GM}}\int_{0}^{d} d^{\frac32}\sqrt{\frac{x/d}{1-x/d}}\mathrm{d}\frac{x}{d}=\sqrt{\frac{d^3}{2GM}}\int_{0}^{1}\sqrt{\frac{x}{1-x}}\mathrm{d}x
[/math]
对于积分
[imath]\int_{0}^{1}\sqrt{\frac{x}{1-x}}\mathrm{d}x[/imath]
有标准的方法处理:令
[imath]\sqrt{\frac{x}{1-x}}=u[/imath]
,则
[imath]x=\frac{u^2}{1+u^2},\mathrm{d}x=\frac{2u}{(1+u^2)^2}\mathrm{d}u[/imath]
则:
[math]
\int_{0}^{1}\sqrt{\frac{x}{1-x}}\mathrm{d}x=\int_{0}^{\infty}\frac{2u^2\mathrm{d}u}{(1+u^2)^2}
[/math]
而:
[math]
\int_{0}^{\infty}\frac{\mathrm{d}u}{1+u^2}=\left.\frac{u}{1+u^{2}}\right|_{0} ^{\infty}-\int_{0}^{\infty} u \mathrm{d} \frac{1}{1+u^{2}}=\int_{0}^{\infty} \frac{2 u^{2}}{\left(1+u^{2}\right)^{2}} \mathrm{d} u
[/math]
另一方面:
[math]
\int_{0}^{\infty}\frac{\mathrm{d}u}{1+u^2}=\left.\arctan u\right |_{0} ^{\infty}=\frac{\pi}{2}
[/math]
故:
[math]
t=\sqrt{\frac{d^3}{2GM}}\cdot \frac{\pi}{2}
[/math]